Jet Energy Calibration

Beate Heinemann University of Liverpool

Fermilab, August 14th 2006

Outline

- Introduction
- CDF and D0 calorimeters
- Response corrections
- Multiple interactions
- η-dependent corrections
- Underlying event and Out-of-cone energy
- Other calibration signals
- Conclusions
- Disclaimer:
 - Most discussion here valid for cone jets
 - Will make some comments on k_T jets
 - Will discuss CDF and D0 procedures as examples
 - ATLAS and CMS have no settled yet

Partons are produced in hard scatter

Would like to know the energy of these partons

The parton will hadronise

- Hadronization is non-perturbative QCD phenomenon:
 - Phenomenological models implemented in MC:
 - Lund-Strong Model: PYTHIA
 - Cluster fragmenation: HERWIG

Multiple pp Interactions

- Overlapping interactions can overlap the jet
- Number of extra interactions depends on luminosity
 - LHC:
 - Low lumi (L=1x10 33 cm $^{-2}$ s $^{-1}$): <N>=2.3
 - High lumi (L= $1x10^{34}$ cm⁻²s⁻¹): <N>=23
 - Tevatron:
 - L= $2x10^{32}$ cm⁻²s⁻¹: <N>=6

Offset depending on number of interactions

More than one parton per proton interacts

 Spectator partons can interact also and put energy into the same area as hard interaction

Hadrons enter calorimeter

Calorimeter response determines what we measure

Calorimeter response depends on angle

- Often calorimeters are different in forward vs central region
- There are often poorly instrumented regions (cracks) that have lower response

Noise can overlap with jet

 Depending on noise level in calorimeter the noise overlapping with our jet can be significant

CDF calorimeter

Central and Wall (|η|<1.2):

 Scintillating tile with lead (iron) as absorber material in EM (HAD) section

- Coarse granularity: ~800 towers
- Non-compensating
 - non-linear response to hadrons
- Rather thin: 4 interaction lengths
- Nearly no noise
- Resolutions:
 - EM energies: $\sigma/E=13.5\%$ / $\sqrt{E} \oplus 1.5\%$
 - HAD energies: $\sigma/E=50\%$ / $\sqrt{E} \oplus 3\%$
- Plug (1.2<|η|<3.6):
 - Similar technology to central
 - Resolution:
 - EM energies: $\sigma/E=16 \% / \sqrt{E} \oplus 1\%$
 - HAD energies: $\sigma/E=80 \% / \sqrt{E \oplus 5\%}$
 - Thicker: 7 interaction lengths

DØ Calorimeter

- Same technology in central and forward calorimeter:
 - Liquid Argon with iron (steal) as absorber in EM (HAD) calorimeter
 - Fine granularity: ~50K cells
 - Depth:
 - 7.2-8.0 interaction lengths
 - Compensating:
 - Compromised in Run 2:
 - Integrate charge only in 260ns due to shorter bunch spacing
 - Resolutions:
 - EM energies: $\sigma/E=15\%$ / $\sqrt{E} \oplus 0.3\%$
 - HAD energies: σ/E=50% / √E ⊕ 4%

Online calibration: see N. Hadley's lecture

In Situ Calorimeter Calibration: Hadronic Energy

- Minimum Ionising Particle (MIP):
 - J/ ψ and W muons
 - peak in HAD calo: ≈2 GeV (in CDF)
 - Check time stability
- Minimum bias events
 - E.g. $N_{tower}(E_T > 500 \text{ MeV})$

In Situ Calorimeter Calibration: EM Energy

- MIP peak:
 - If visible (CDF at 300 MeV)
- Z→ ee peak:
 - Set absolute EM scale in central and plug
- E/p for electrons
 - After having calibrated p and material (see M. Shapiro's lecture)
- Minimum Bias events:
 - Occupancy above some threshold: e.g. 500 MeV

Calibrating jets at a Hadron Collider

Hadron collider:

- Physics processes span entire jet E_T range: 0< E_T <√s/2
- Calibration processes (photon-jet) run out of steam much earlier:
 - E.g. $d\sigma(\gamma)/dp_T = 0.001 d\sigma(jet)/dp_T$
- Unlike at HERA (NC process) or LEP/SLC (Z-resonance)

Two different approaches

- CDF and DØ use very different approaches
 - Documented in
 - CDF Run 2: hep-ex/0510047 (accepted by NIM)
 - DØ Run 1: NIM A424: 352-394 (1999)
 - DØ Run 2: http://www-d0.fnal.gov/phys_id/jes/public/plots_v7.1/index.html

Main difference:

- CDF uses test beam and single particles measured in-situ to understand absolute response of single particles
 - deduce jet response using simulation
 - Cross check with calibration processes like photon-jet data
- DØ uses photon-jet data to measure absolute response
 - Extra correction for "showering" necessary

Other differences:

- CDF corrects separately for underlying event, multiple interactions, out-of-cone energy
- DØ includes all these effects into one correction factor

Overview: CDF and DØ

CDF calibrates P_T

$$P_{T,jet}^{corr} = \frac{P_{T,jet}^{raw} \times F_{\eta} - MI}{R}$$

- P_T^{corr}: calibrated jet P_T
- P_T^{raw}: raw jet P_T
- F_{η} : eta-dependent correction
- R: absolute response
- MI: multiple interactions

DØ calibrates Energy

$$E_{jet}^{corr} = \frac{E_{jet}^{raw} - O}{F_n \times R \times S}$$

- E^{corr}: calibrated jet E
- Eraw: raw jet E
- F_{η} : eta-dependent correction
- R: absolute response
- O: offset energy
 - includes MI, noise, UE
- S: showering corrections
- Systematic error associated with each step
- additional corrections to get to parton energy

CDF: Detector to Particle Level

- Do not use data since no high statistics calibration processes at high E_⊤>100 GeV
- Extracted from MC → MC needs to
 - Simulate accurately the response of detector to single particles (charged pions, photons, protons, neutrons, etc.):

CALORIMETER SIMULATION

(CDF uses fast parameterization GFLASH, D0 uses GEANT3)

2. Describe particle spectra and densities at all jet Et: FRAGMENTATION

- Measure fragmentation and single particle response in data and tune MC to describe it
- Use MC to determine correction function to go from observed to "true"/most likely Et:

Single Particle Response Simulation

- Single particle response:
 - Test beam
 - In situ:
 - Select "isolated" tracks and measure energy in tower behind them
 - Dedicated trigger
 - Perform average BG subtraction
 - Tune simulation to describe E/p distributions at each p (use π/p/K average mixture in MC)

Single Particle Response Simulation

- MC models
 - Hadron response at low p_T (in situ data) and high p_T (test beam data)
 - Electron response

Fragmentation

- Due to non-linearity of calorimeters big difference between e.g.
 - one 10 GeV pion: ~8 GeV
 - ten 1 GeV pions: ~ 6 GeV
- Measure P_T spectra of particles in jets at different E_T values as function of track P_T:
 - Typically mean rather low
 - Requires understanding track efficiency inside jets

Jet Correction to Particle Level

- MC convolutes response and particle momentum spectrum for us
 - Use tuned and validated MC to compare measured jet to jet at particle level
 - systematic uncertainty given by how well MC simulation and fragmentation reproduced data

CDF: Absolute Calorimeter Response

- Nearly independent of cone size
 - Response about 80% at p_T =50 GeV, 87% at p_T =300 GeV

Response correction using prompt photons

Prompt photon process:

- Photon well measured in calorimeter
 - Calibrated using electrons
- Constraint: $E_T(\gamma) = E_T(jet)$

Complications:

- Number of events at high E_T rather low:
 - E_T(γ)>300 GeV, ∫Ldt=1 fb⁻¹: 40 events
- Background due to π^0 's
 - Purity: 30-80% for $E_{\tau}(\gamma)=20-100 \text{ GeV}$
- Higher order processes:
 - Photon + 2 jets

DØ using prompt photons

- Reduce "physics effects":
 - "MPF method":
 - MPF=Missing Et Projection Fraction
 - Require jet to be back-to-back with photon:
 - Δφ>3 radians (>172°)
- Reach high E_{T,jet}:
 - Calibrate versus energy E_{jet}
 - Exploiting similarity between forward and central calorimeters
 - η_{jet} ≈ 0: E_{jet} ≈ $E_{T,jet}$
 - η_{jet} ≈ 2: E_{jet} ≈ 3 E_{T,jet}

Syst. Uncertainties on Response

- Varying assumptions gives systematic uncertainty
- In analysis data/MC difference counts in most cases
 - Same procedure done for MC

Multiple Interactions (MI)

- Need to know how many interactions there were:
 - # of z-vertices ~ # of interactions
- Throw random cones in Minimum Bias events
 - Determine average E_T per cone, e.g.
 CDF: 1 GeV for R=0.7

The complication for k_⊤ algorithm

- Multiple Interactions are main reason for the difficulties with the k_T algorithm at hadron colliders
 - The method of throwing a random cone does not work:
 - they are not cone jets
 - k_T algorithm biases itself to go where the energy is and picks up energy from MI
- k_T algorithm has now been used by CDF in Run 2 for the jet cross section:
 - Empirical correction factor using fact that cross section independent of inst. luminosity

Relative Corrections

Relative Corrections

- Mapping out cracks and response of calorimeter
- Central at ~1 by definition
- D0:
 - Response similar in central and forward
 - Two rather large cracks
- CDF:
 - Response of forward better than of central
 - Three smaller cracks
- Difficulties:
 - depends on E_T
 - Can be (most often is initially)
 different for data and MC

Corrections from Particle Jet to Parton

- Underlying event (UE) and Out-of-cone (OOC) energy
 - Only used if parton energy is wanted
 - Requires MC modeling of UE and OOC
 - Differences are taken as systematic uncertainty

$$P_{T,parton} = P_{T,particle} - UE + OOC$$

Underlying Event

- Underlying event definition:
 - "beam-beam remnants": energy from interaction of spectator partons
 - "Initial state radiation": energy radiated off hard process before main interaction
 - Not wanted when e.g. measuring the top quark mass
- Can be estimated using Monte Carlo
 - Measurements led to tuning of MC generators: PYTHIA, Herwig+Jimmy

Measuring the Underlying Event

Leading Jet Direction

- Many studies exist about underlying event:
 - Checkout talks by Rick Field/U. of Florida
- At LHC we will need to measure it:
 - Expect it to be much harder than at Tevatron

Out of Cone Energy (OOC)

Out-of-Cone Energy:

Original parton energy that escapes the cone

• E.g. due to gluon radiation

- Jet shape in MC must describe data:
 - measure energy flow in annuli around jet
- Differences between data and MC
 - Lead to rather large systematic uncertainty

Jet Energy Scale Uncertainties

- CDF and DØ achieve similar uncertainties after following very different paths before
- Both collaborations have plans to improve further

Compare data and MC after calibration

Data and MC agree within systematic uncertainties

Photon-Jet P_T balance

- Agreement within 3% but differences in distributions
 - Data, Pythia and Herwig all a little different
- These are physics effects!

Z-jet P_T balance

- Better agreement of data and MC than in photon-jet data
 - In progress of understanding this better together with Herwig and Pythia authors

Calibration Peaks from W's and Z's

- Very, very difficult to see inclusive decays of W's and Z's to jets
 - Small signal on huge background
 - W+2 jets
 - Photon+2 jets (UA2)
- Two best opportunities:
 - W in top quark decays
 - Z in bb decay mode

UA2, S/B ~ 1/35, ~5000 Signal

In-situ Measurement of JES

 Additionally, use W→jj mass resonance (M_{jj}) to measure the jet energy scale (JES) uncertainty

2D fit of the invariant mass of the non-b-jets and the top mass:

JES∝ M(jj)- 80.4 GeV/c²

Measurement of JES scales directly with data statistics

W→jj Calibration in Top Events

Fit for ratio of JES in data to JES in MC

CDF (1 fb⁻¹):
$$\delta_{JES} = 0.99 \pm 0.02$$

DØ (0.3 fb⁻¹): $\delta_{JES} = 0.99 \pm 0.03$

Constrain JES to 2% using 166 events

CDF Preliminary 955 pb⁻¹

CDF Run II Preliminary (955 pb⁻¹) Monte Carlo Events mean: 77.7 GeV/c2 KS 0.10 RMS: 19.0 GeV/c2 80 Data mean: 79.7 GeV/c² RMS: 20.5 GeV/c2 60 $t\bar{t} (M = 175)$ 40 Non-W QCD ZZ, WW, WZ Single Top 20 $W c\overline{c} + 2p$ $W b\bar{b} + 2p$ W 4p 0 → Data 100 50 150 m_{ii} GeV/c² $m_{ij}\, \text{Gev/c}^2$ 150 Monte Carlo Data 100 50 -2 0 40

At LHC will have 45,000 top events/month!

Z->bb

- Z→bb decay mode:
 - Suppresses QCD background more than signal
 - Difficult to trigger
 - CDF uses secondary vertex trigger
 - D0 uses semi-leptonic decays collected by muon trigger
- Use this to measure difference between data and MC JES, e.g. DØ:
 - Data:
 - μ =81.0 +/- 2.2
 - σ =10.7 +/- 2.1
 - MC:
 - μ =83.3
 - $\sigma = 13.0$

Conclusions

- Different calorimeters/collaborations can choose very different procedures:
 - CDF tunes simulation and then derives everything from MC
 - · Systematic uncertainties depend on how well MC models data
 - DØ does a purely data based estimate
 - Systematic uncertainties depend on understanding of calibration process and sample composition
- Calibration signals:
 - MIP peak, E/p, Z→ee and Minimum Bias for calorimeter calibration
 - Di-jet balancing for relative response in cracks and in plug calorimeter
 - Isolated tracks for understanding calorimeter response to π 's
 - fragmentation needs to be modeled well
 - Photon-jet balancing for relative and absolute response
- Independent channels used for cross checks/systematic error:
 - Photon-Jet and Z-jet balancing
 - Z→bb peak and W→jj peak in top events
- 3-4% systematic uncertainty achieved so far
 - Better for jets in top events (~2%)

Jets are very complex and rather tough to calibrate

Backup

Jet Energy Scale

Jet energy scale

 Determine the energy of the partons produced in the hard scattering process

- Instrumental effects:

- Non-linearity of calorimeter
- Response to hadrons
- Poorly instrumented regions

– Physics effects:

- Initial and final state radiation
- Underlying event
- Hadronization
- Flavor of parton
- Test each in data and MC

Offset correction in D0

Offset includes:

- Underlying event
- Multiple interactions:
 - # of Interactions ~ # of z-vertices
- Noise
- Pile-up from previous interaction
 - Due to long shaping time of preamplifier
- Measure
 - Minimum bias events per tower
 - Depending on number of vertices

